

SCAFFOLDING -ADVANCED

CPCCLSF4001 Licence to erect, alter and dismantle scaffolding advanced level

LEARNER GUIDE

www.integralskills.com.au

INTENTIONALLY BLANK

MODIFICATION HISTORY

Version	Date	Nature of Amendment
1	13 Feb 20	Creation
2	10 Jan 22	Update to new Competency

Table of Contents

MODIFICATION HISTORY	3
1.1 Introduction	6
1.1.1 When is a Scaffold Licence Needed?	6
1.1.2 What Types of Work can you do with a Scaffolding Advanced Level Licence?	6
1.1.3 High Risk Work Licence Requirements	/
1.2 Types of Scaffolding	7
1.2.1 Basic Level Scaffolds	8
1.2.2 Intermediate Level Scattolds	9
1.2.4 Scaffold Duty	.10
1 3 Dian the Joh	11
1.3.1 Assess the Task and Gather Site Information	.11
1.3.1.1 Identify Forces and Loads	.13
1.3.2 Work Health and Safety Requirements	.14
1.3.3 Duty of Care	.15
	.15
1.4 Identify and Control Hazards	16
1.4.1 Consultation and Communicating with Others	.1/
1.4.2.1 Working Near Power Lines	.18
Tiger Tails	.20
1.4.3 Risk Assessment	.21
	.25
2.1 Identify, Select and Inspect Equipment	23
2.1.1 Identify, Select and Inspect Associated Equipment	.24
2.1.1.2 Ladders	.25
2.1.1.3 Scaffold Tubes	.26
2.1.1.4 Couplers and Fittings	.26
2.1.1.5 Fibre Ropes and FSWR	.2/
2.1.1.7 Screening	.20
2.1.1.8 Adjustable Props	.29
2.1.1.9 Prefabricated Needles/Suspension Rigs & Counterweights	.29
2.1.1.10 Beam Clamps	.29
2.1.1.12 Hand Tools	.30
2.1.2 Identify, Select and Inspect Scaffolding Equipment	.31
2.1.2.1 Swing Stages	.31
2.1.3.1 Safety Harnesses	.32
2.1.3.2 Lanyards and Energy Absorbers	.34
2.1.3.3 Inertia Reels	.34
2.2 Identify Communication Methods and Equipment	35
2.2.1 Select and Inspect Communications Equipment	.35
2.2.1.1 Conventional Radio	.35
2.2.1.2 Fixed Channel Radio	.36
2.3 Isolate Defective Equipment	37
2.4 Set Up for the Task	37
2.4.1 Apply Hazard Control Measures	.37
2.4.2 Fit Safety Equipment	.38
2.4.3 Prepare and Position Scattolding Equipment	. 39
3.1 Erect Scaffold and Scaffold Equipment	39
3.1.1 Suspended Scaffolds	.40

3.1.1.1 Swing Stages	41
Cradle	42
Hoists	43
Suspension and Secondary Ropes	44
Suspension Rigs	44
Counterweights and Tracks and Trolleys	45
3.1.1.2 Calculations for Suspended Scaffolds	46
3.1.2 Hung Scaffolds	49
3.1.2.1 Hung Scaffold Requirements	51
3.1.3 General Scaffold Safety Requirements	52
3.1.4 Work Safely at Heights	52
3.1.4.1 Monitor Work Area and Equipment	53
3.1.5 Communications	54
2.2 Increation and Maintonance of Scaffolds	EE
2.2 1 Modifing or Inspecting a Coeffold	55
3.2.1 Moulivilly of Inspecting a Scattolu	50
3.2.2 Completing a Handover Certificate	57
3.3 Dismantle Scaffold and Scaffold Equipment	57
3.4 Incidents and Emergency Response	58
3 4 1 What is an Incident	58
3.4.1 Responding to an Incident	58
3.4.1 What is an Incident	58 58 58
3.4.1 What is an Incident	58 58 58
 3.4.1 What is an Incident	58 58 58 59
 3.4.1 What is an Incident. 3.4.1.1 Responding to an Incident	58 58 58 59 59 59 59
 3.4.1 What is an Incident. 3.4.1.1 Responding to an Incident	58 58 58 59 59 59 59 60
 3.4.1 What is an Incident. 3.4.1.1 Responding to an Incident	58 58 59 59 59 59 60 60
 3.4.1 What is an Incident. 3.4.1.1 Responding to an Incident	58 58 59 59 59 59 60 60 61
 3.4.1 What is an Incident. 3.4.1.1 Responding to an Incident	58 58 59 59 59 60 60 61 61
 3.4.1 What is an Incident. 3.4.1.1 Responding to an Incident	58 58 59 59 59 60 61 61
 3.4.1 What is an Incident. 3.4.1.1 Responding to an Incident	58 58 59 59 59 60 61 61
 3.4.1 What is an Incident. 3.4.1.1 Responding to an Incident	58 58 59 59 60 61 61 61
 3.4.1 What is an Incident. 3.4.1.1 Responding to an Incident	58 58 59 59 59 60 61 61 61 61
 3.4.1 What is an Incident. 3.4.1.1 Responding to an Incident	58 58 59 59 59 60 61 61 61 61 62 62 62
 3.4.1 What is an Incident. 3.4.1.1 Responding to an Incident	58 58 59 59 59 60 61 61 61 61 62 62 62 62
3.4.1 What is an Incident	58 58 59 59 60 61 61 61 62 62 62 63 64
3.4.1 What is an Incident	58 58 59 59 60 61 61 61 62 62 62 63 64 70

1.1 Introduction

These training materials are based on the National High Risk Licence Unit of Competence **CPCCLSF4001 Licence to Erect, Alter and Dismantle Scaffolding Advanced Level.**

You will learn about:

- Planning out your work.
- Selecting and inspecting equipment.
- Setting up for the task.
- Erecting and dismantling hung and suspended scaffolding.

1.1.1 When is a Scaffold Licence Needed?

A scaffold licence is needed where working platforms are at a height where a person or object could fall more than 4 metres.

1.1.2 What Types of Work can you do with a Scaffolding Advanced Level Licence?

A person with an advanced scaffolding licence is legally allowed to carry out the following tasks:

- All basic scaffolding tasks:
 - Erection, alteration and dismantling of modular and prefabricated scaffolds.
 - Erection of cantilevered materials hoists with a maximum working load limit of 500 kilograms.
 - Use of ropes and gin wheels.
 - Installation of safety nets.
 - Use of static lines.
 - Erection of bracket scaffolds (tank and formwork).
- All intermediate scaffolding tasks:
 - Installation of cantilevered crane loading platforms.
 - Erection and dismantling of cantilevered and spurred scaffolds.
 - Erection and dismantling of barrow ramps and sloping platforms.
 - Scaffolds associated with perimeter safety screens and shutters.
 - Erection and dismantling of mast climbers.
 - Erection, alteration and dismantling of tube and coupler scaffolds including tube and coupler covered ways and gantries.
- Erection of hung scaffolds.
- Erection of suspended scaffolds.

1.1.3 High Risk Work Licence Requirements

Once you pass your assessment you will have **60 days** to apply for your licence.

You must renew your licence within 12 months of its expiry otherwise:

- Your licence can't be renewed.
- You need to repeat the course and re-apply for your licence.
- You need to enrol in the course again and be supervised by somebody who has a current licence for the same class.

You can still do high risk work without a licence as long as:

- You are enrolled in a high risk course for the class, and
- You are being supervised by somebody who has a licence for the same class.

Any licensed worker must take reasonable steps to make sure the way they work does not impact on the safety of themselves or any other worker. This is their legal duty of care. Failing to work safely can result in the health and safety regulator:

- Suspending or cancelling your licence.
- Refusing to renew your licence.
- Ordering that you are reassessed to ensure you are competent.

Your employer might ask you for evidence that you have a high risk licence before you start any high risk work. You can show them:

- Your licence.
- Proof from the training company that you have passed your assessment.
- Proof that you are currently completing a course for high risk work.

1.2 Types of Scaffolding

When selecting a scaffold, the specified building's design, shape, and location should be considered.

The scaffold's ability to adapt to the structure's contours should also be taken into account.

In addition, the purpose for which the scaffold will be used should be a factor in making the decision of which type of scaffold should be selected.

You will need to decide what type of scaffold construction is the most appropriate for the tasks you need to perform.

1.2.1 Basic Level Scaffolds

The following table outlines the main types of basic level scaffolds.

Name	Description	Example
Mobile Scaffold	A Mobile Scaffold is an independent, free-standing, movable scaffold mounted on castors. It is useful for maintenance where multiple points must be accessed.	
Birdcage Scaffold	A Birdcage Scaffold consists of more than two rows of standards, connected by ledgers and transoms. It is intended for use on one level only, and is commonly used for working on a ceiling.	
Modular or Frame Scaffolding	A Modular or Frame Scaffolding (steel, fibreglass or aluminium) is assembled from prefabricated frames, braces and accessories.	
Bracket Scaffold	A Bracket Scaffold is a scaffold that has a platform carried on frames attached to or supported by a permanent or temporary construction. Bracket scaffolds are often used for maintenance work.	
Tower Scaffold	A Tower Scaffold can be a mobile, modular, or tube and coupler variety. Tower scaffolds are generally fitted with a single work platform with ladder access and have only 2 rows of standards. Tower scaffolds are popular where there is a limited amount of space to erect a scaffold.	

1.2.2 Intermediate Level Scaffolds

The following table outlines the main types of intermediate level scaffolds.

Name	Description	Example
Tube and Coupler	A Tube and Coupler Scaffold is erected using scaffold tubes connected with couplers. These are useful where the scaffold must be erected in a specific shape to match a structure, or prefabricated scaffolds will not meet the requirements of the task.	
Single Pole Scaffold	A Single Pole Scaffold contains a single row of standards, and is completely dependent on the structure it is placed against for support. A single pole scaffold is often used for bricklaying or other masonry work.	
Cantilever Scaffold	A Cantilever Scaffold is a scaffold that is supported by cantilevered load-bearing members. It is commonly used where surface conditions are unacceptable, or the required height of the work platform makes conventional scaffolds unsuitable.	
Spurred Scaffold	A Spurred Scaffold is partially supported by inclined load- bearing members called 'spurs'. They are used where there is insufficient load bearing capability for standards, or where the scaffold must be configured in a way that does not have all standards resting on the ground/supporting structure. An example of this is a scaffold that is built around and above an entryway.	

1.2.3 Advanced Level Scaffolds

The following table outlines the main types of advanced level scaffolds.

Name	Description	Example
Suspended or Swing Stage Scaffold	A Suspended or Swing Stage Scaffold can be either raised or lowered, as it has a suspended platform. These types of scaffolds are commonly associated with window washers.	
Hung Scaffolds	 Hung Scaffolds are temporary structures suspended by tubes, wire ropes or chains from a permanent structure and are used to access areas that would otherwise be difficult or unsafe to access by other means. They are usually made from steel, aluminium or timber components. Hung scaffolds CANNOT be raised or lowered when in use. Some can, however, travel horizontally with the aid of girder trolleys or mobile suspension rigs. 	

1.2.4 Scaffold Duty

Scaffolds have different rated capacities according to their duty:

Duty	Minimum Working Platform Width	Maximum Load Allowed on Platform
Light Duty	450mm This is the minimum clear access required for a non-working or access only platform.	225kg per bay
Medium Duty	675mm	450kg per bay
Heavy Duty	900mm	675kg per bay

The configuration and the parts that make it up generally determine the duty of a scaffold.

You need to make sure the scaffold you intend to erect will be the correct duty depending on the requirements of the job, and the types of loads that will be resting on the scaffold while it is erected.

1.3 Plan the Job

Careful planning is the first step in completing a task safely.

By making sure you are aware of all of the requirements of the job, and the steps required to carry it out properly you can help to keep the work site and workers as safe as possible.

1.3.1 Assess the Task and Gather Site Information

The first thing to do when planning a task is to work out exactly what it is you need to do. Simply put, you will need to assess the task.

To do this, you will need to collect all the information you require about the tasks, personnel, local site conditions and equipment.

Site information may include:

- Structure condition and suitability.
- Hazards that exist on site or that are associated with the completion of the task.
- Access and egress (entry and exit) to the work area.
- Equipment that is being used on site.

You can find task and site information in documentation such as:

- Safe Work Method Statements (SWMS).
- Site-specific Job Safety Analyses (JSA).
- Task plans.
- Manufacturer's specifications.

Make sure you can accurately interpret and understand structural charts and plans. They will help you decide which scaffolding equipment and tools you will need and what methods and procedures you will use throughout the task.

When planning out the task, some things you may consider are:

- Task plans.
- Access and egress to and from the work area.
- Location and specifics of the task.
- Height and width of the scaffold.
- Load scaffold is to support.
- Plant required for the task.
- Equipment required for the task.
- Availability of equipment.
- Weights and/or any other information that will allow you to plan the job.
- Induction or training requirements.
- Safe Work Method Statements.
- Risk assessments.

When you are planning out the scaffolding task and the use of scaffolding equipment it is very important to consult with other people involved in the job. You may need to talk to supervisors, colleagues, managers responsible for workplace/operations, and other scaffolders/site workers.

The procedures and techniques you plan to use to complete your tasks should conform with all legal requirements related to scaffolding work including:

- Relevant commonwealth, state or territory Work Health & Safety (WHS) legislation.
- Local government regulations.
- Scaffolding standards and codes of practice.
- Australian Standard AS/NZS 1576.

This Australian Standard outlines the performance requirements and methods of structural and general design for access and working scaffolds. In general these requirements also apply to other types of working scaffolds.

The purpose of a working scaffold is to provide a safe place of work with safe access suitable for the work being done. The Australian Standard sets out the structural and operational requirements for working scaffolds.

Your plan should include information on how you intend to carry out the task (sequence), how you intend to deal with any unidentified hazards and what components you will use to complete the scaffold.

The details of the scaffold plan may include:

- The number of bays, lifts and platforms.
- The location of the scaffold.
- Details of scaffold access.
- The duty of the scaffold (light, medium, heavy).
- Type of equipment to be used including trolleys, hoists, ropes and cradles.
- Method of anchoring suspension rigs or hung scaffolds.

Your plan should refer to the scaffold plans/drawings and any other relevant documentation such as work method statements or site procedures.

These drawings can be used as a reference to determine the scaffold elements/parts that are required to erect it and the configuration of work platforms, ladder access and other components or associated equipment.

Make sure everybody involved in the scaffolding work is familiar with the plan and understands what they need to do.

1.3.1.1 Identify Forces and Loads

A 'load' is any type of force exerted on an object.

It is important to understand the relevant forces and loads that are associated with the scaffolding work you will be doing.

Forces and loads apply to scaffolds and the structures they are attached to.

When constructing a scaffold there are a range of forces and loads you may need to consider.

- Dead Loads The weight of a scaffold or hoist and its components before it is loaded.
- Live Loads The weight of the equipment and personnel on the scaffold (in each bay).
- **Static Load** A load that is not moving (consistent load).
- Dynamic Load Force made by a moving load on a resisting structure or component.
- **Wind Load** The force made by wind on a structure or its components.
- Environmental Load The weight of environmental factors such as water, dust and debris that may be on the scaffold.

Each standard is designed to hold at least 1/3 of the duty live load per bay.

For example a medium duty scaffold that can hold 450kg per bay requires each standard to hold at least 150kg.

It is important to know the weight of any material you place on a scaffold. If you place too much weight on a scaffold it may collapse.

Some loads may have the weight marked on them or they may come with a consignment note or weighbridge certificate.

You may have to calculate the weight of a load using appropriate mathematical procedures and formulas. Remember to add the weight of pallets, boxes and drums when lifting loads.

The weights of some common materials can be found in the table below.

Material	Weight
Cubic metre of concrete	2.4 metric tonnes
Cubic metre of water	1 metric tonne
Cubic metre of earth or clay	1.9 metric tonnes
Cubic metre of steel	7.84 metric tonnes
1000 common bricks	4 metric tonnes

1.3.2 Work Health and Safety Requirements

Work Health & Safety (WHS) is defined as laws and guidelines to help keep your workplace safe.

These can be broken down into four main types:

Law	Explanation	
Acts	Laws to protect the health, safety and welfare of people at work.	
Regulations	Gives more details or information on particular parts of the Act.	
Codes of Practice Are practical instructions on how to meet the terms of the Law.		
Australian Standards	Give you the minimum levels of performance or quality for a hazard, work process or product such as AS/NZS 1576. Note: other valid Australian Standards may also apply.	

1.3.3 Duty of Care

All personnel have a legal responsibility under duty of care to do everything reasonably practicable to protect others from harm by working safely and following instructions.

The following personnel have a duty of care:

- Employers and self-employed persons.
- Persons in control of the workplace.
- Supervisors.
- Designers.
- Manufacturers.
- Suppliers.
- Workers.
- Inspectors.

1.3.4 Safe Work Method Statements

A Safe Work Method Statement (SWMS) details how specific hazards and risks, related to the task being completed, will be managed and is developed by the employer for their workers.

SWMS fulfil a number of objectives:

- They outline a safe method of work for a specific job by identifying associated hazards and giving instructions of how these need to be managed.
- They provide an induction document that workers must read and understand before starting the job.
- They assist in effectively coordinating the work, the materials required, the time required and the people involved to achieve a safe and efficient outcome.
- They are a quality assurance tool.

To complete a SWMS:

- **1.** Break the job down into logical steps taking into consideration what is required to be achieved by the task.
- **2.** Against each step, identify the workplace hazards in this activity i.e. the ways that a person (or plant) could be injured or harmed (or damaged) during each step.
- **3.** Decide on measures required to mitigate hazards i.e. what could be done to make the job safer and prevent injuries or harm that may occur.
- **4.** Identify roles and responsibilities for actions and outcomes to make sure risk/hazard controls are carried out under supervision.
- **5.** Ensure the SWMS is fully understood by all personnel prior to commencing the task.

The Safe Work Method Statement must be available for inspection at any given time.

Safe Work Method Statements may also be referred to as Safe Work Procedures (SWP) or Job Safety Analysis (JSA). It must be prepared in consultation with those people who will be doing the job.

A sample SWMS is available in Appendix A.

1.4 Identify and Control Hazards

Hazards create risk. Check for hazards.

A **RISK** is the chance of a hazard hurting you or somebody else or causing some damage.

A **HAZARD** is the thing or situation that causes injury, harm or damage.

If you can remove or at least control a **HAZARD** you can reduce the **RISK** involved.

1.4.1 Consultation and Communicating with Others

Make sure you talk to the following people about hazards before you start work:

- Safety officers.
- Site engineers (where applicable).
- Supervisors.
- Colleagues.
- Managers who are authorised to take responsibility for the workplace or operations.
- Health and safety representatives.

It is important to communicate with workplace personnel and safety officers before starting on a worksite to ensure that the scaffold team is aware of any workplace policies, site-specific procedures and hazards.

1.4.2 Hazard Identification

Part of your job is to look around to see if you can find any hazards before you start.

A good tip is to check:

- **Above head height** remember that scaffolding may be above your head.
- At eye level look around to see if there is anything in the way of where you
 want to place the scaffold.
- On the ground (and below) Have a look at the ground conditions will it support the weight of the scaffold and load?

Common workplace hazards include:

- Ground conditions:
 - Non-weight bearing surfaces.
- Poor lighting.
- Overhead hazards:
 - Power lines.
 - Overhead service lines.
 - Obstructions.
 - Falling objects.
- Surrounding structures:
 - Buildings.
 - Obstructions.
 - Facilities.
 - Trees.
 - Equipment.
- Traffic:
 - Pedestrians.
 - Personnel.
 - Vehicles.
 - Mobile plant.
- Weather:
 - Wind.
 - Lightning.
 - Rain.
- Workplace-specific hazards:
 - Dangerous materials.
 - Falling from heights.

1.4.2.1 Working Near Power Lines

Working near power lines can be dangerous if you are not careful.

It is very important that you know the safe operating distances for different types of power lines and the steps you must take if your job needs you to work closer than the safe distances.

Generally, if you need to work closer than the safe work distance you must:

- Contact the local electrical authority for permission to work closer (this is called an exemption).
- Have the power lines shut off. If this is not possible then have the power lines insulated.
- Use a spotter (depending on local laws and rules).

Distances are different depending on the state or territory you are working in and the voltage of the power lines. You should check with the local electrical authority for information and advice to find out the voltage of power lines in your work area.

Queensland

The Queensland Electrical Safety Regulation breaks down the distances in detail. Exclusion zones are broken down not only by size of power line but also by the competency level of the operator. This means that the requirements should be clarified with the electrical authority before work commences even if the distance appears to be outside the zones.

The following minimum distances are provided as guidance:

Power Line Type	Distance
Up to 132kV	3.0m
132kV up to 330kV	6.0m
330kV and above	8.0m

New South Wales

In New South Wales, for anyone who is not accredited, equipment operation may not be any closer than the following distances to power lines:

Power Line Type	Distance
Up to and including 132kV	3.0m
Above 132kV up to and including 330kV	6.0m
Above 330kV	8.0m

To work closer than these distances requires authority from the relevant electrical authority and adherence to cl.64(2)(e) of the regulations.

Australian Capital Territory

In the ACT mobile plant operators and persons erecting or working from scaffolding must maintain a safe minimum distance to power lines as outlined in the table below:

Power Line Type	Distance
Less than 33kv	4.0m
33kV or more (transmission lines)	5.0m

Victoria

In Victoria the Framework for Undertaking Work Near Overhead and Underground Assets states that equipment must not be closer than the following distances to power lines:

Power Line Type	Distance
Distribution lines up to and including 66kV (power poles)	6.4m (or 3.0m with a qualified spotter)
Transmission lines greater than 66kV (towers)	10m (or 8m with a qualified spotter)

Tasmania

In Tasmania equipment must not be closer than the following distances to power lines:

Power Line Type	Distance
Up to and including 133kV (poles)	6.4m (or 3m with a safety observer)
Greater than 133kV (towers)	10m (or 8m with a safety observer)

South Australia

In South Australia mobile plant operators and persons erecting or working from scaffolding must maintain a safe minimum distance to power lines as outlined in the table below:

Power Line Type	Distance
Up to 132kv (including 132kv poles)	6.4m (or 3.0m with a spotter)
132kv or more (including 132kv towers)	10.0m (or 8.0m with a spotter)

Western Australia

In Western Australia this falls under Regulation 3.64 from the OSH Regulations and states the following as the minimum distances:

Power Line Type	Distance
Up to 1kV (insulated)	0.5m
Up to 1kV (uninsulated)	1.0m
Above 1kV and up to 33kV	3.0m
Above 33kV	6.0m

Northern Territory

In the Northern Territory equipment must not be closer than the following distances to power lines:

Power Line Type	Distance
Up to and including 132kV (distribution lines)	6.4m (or 3m with a spotter)
Greater than 132kV (transmission lines)	10m (or 8m with a spotter)

Tiger Tails

Tiger tails are used to clearly show the location of overhead power lines. Tiger tails **DO NOT** insulate the power lines so exclusion zones and safe operating distances must still be used, even when tiger tails are in use.

1.4.3 Risk Assessment

Once you have identified the hazards on site or related to the work you will be doing you need to assess their risk level.

Risk levels are worked out by looking at 2 factors:

Consequence	How bad will it be if the hazard causes harm?
Likelihood	What is the chance of the hazard causing harm?

You can use a table like the one shown here to work out the risk level:

	Consequence				
Likelihood	1. Insignificant	2. Minor First Aid Required	3. Moderate Medical Attention and Time Off Work	4. Major Long Term Illness or Serious Injury	5. Catastrophic Kill or Cause Permanent Disability or Illness
1. Rare	Low	Low	Moderate	Moderate	Moderate
2. Unlikely	Low	Low	Moderate	Moderate	High
3. Possible	Low	Moderate	High	High	Extreme
4. Likely	Moderate	Moderate	High	High	Extreme
5. Almost Certain	Moderate	High	High	Extreme	Extreme

For example, a hazard that has a Major consequence and is Almost Certain to occur has a risk level of Extreme.

	Consequence				
Likelihood	1. Insignificant	2. Minor First Aid Required	3. Moderate Medical Attention and Time Off Work	4. Major Long Term Illness or Serious Injury	5. Catastrophic Kill or Cause Permanent Disability or Illness
1. Rare	Low	Low	Moderate	Moderate	Moderate
2. Unlikely	Low	Low	Moderate	Moderate	High
3. Possible	Low	Moderate	High	High	Extreme
4. Likely	Moderate	Moderate	High	High	Extreme
5. Almost Certain	Moderate	High	High	Extreme	Extreme

The risk level will help you to work out what kind of action needs to be taken, and how soon you need to act.

The table below is an example of a site risk policy:

Risk Level	Action		
Extreme	This is an unacceptable risk level The task, process or activity must not proceed .		
High	 This is an unacceptable risk level The proposed activity can only proceed, provided that: The risk level has been reduced to as low as reasonably practicable using the hierarch of risk controls. The risk controls must include those identified in legislation, Australian Standards, Co of Practice etc. The risk assessment has been reviewed and approved by the Supervisor. A Safe Working Procedure or Work Method Statement has been prepared. The supervisor must review and document the effectiveness of the implemented risk controls. 		
Moderate	 This is an unacceptable risk level The proposed activity can only proceed, provided that: 1. The risk level has been reduced to as low as reasonably practicable using the hierarchy of risk controls. 2. The risk assessment has been reviewed and approved by the Supervisor. 3. A Safe Working Procedure or Work Method Statement has been prepared. 		
Low	The proposed task or process needs to be managed by documented routine procedures, which must include application of the hierarchy of controls.		

The action you take will depend on:

1.4.4 Hazard Controls

Once hazards and risks have been identified and assessed you need to work out what the best way to manage them will be.

The Hierarchy of Hazard Control is the name given to a range of control strategies used to eliminate or control hazards and risks in the workplace. Hazard controls should be applied before you start work, or as soon as a hazard is identified during the work.

limination				
	Substitution			
	Isolation			
	Engineering Controls			
	Administrative Controls			
				Personal Protective Equipment

The Hierarchy has 6 levels.

Always start at the top of the list and work your way down.

Hierarchy Level	Explanation
1. Elimination	Completely remove the hazard. This is the best kind of hazard control.
2. Substitution	Swap a dangerous work method or situation for one that is less dangerous.
3. Isolation	Isolate or restrict access to the hazard.
4. Engineering Controls	Use equipment to lower the risk level.
5. Administrative Controls	Site rules and policies attempt to control a hazard. Includes Safe Work Practices.
6. Personal Protective Equipment	The least effective control. Use PPE while you work. This should be selected at the planning stage of your work, and checked before starting the job.

You may need to use a range of control measures to reduce the risk to an acceptable level.

Hazard controls need to be implemented before you start work or as soon as a hazard is identified during the work.

2.1 Identify, Select and Inspect Equipment

A scaffolding task may require the use of a wide range of scaffolding, associated and safety equipment to be used and installed.

Part of completing the planning for the scaffolding job is to identify what equipment you will need, then select and inspect that equipment to make sure it is safe for use.

It is very important that you check all equipment before you use it to ensure that it is safe to use and suitable for the task.

You may need to consult with other people involved in the job such as supervisors, colleagues, managers, other scaffolders, and site personnel when identifying the equipment needed to carry out the scaffolding task.

2.1.1 Identify, Select and Inspect Associated Equipment

The erection, alteration and dismantling of scaffolds requires you to use a range of associated equipment.

Associated equipment includes:

- Planks.
- Ladders and stairways.
- Scaffold tubes.
- Couplers and fittings.
- Fibre ropes and Flexible Steel Wire Rope (FSWR).
- Chains.
- Screening.
- Adjustable props.
- Prefabricated needles.
- Counterweights.
- Beam clamps.
- Trolleys.
- Hand tools.

2.1.1.1 Scaffold Planks

Planks are used to construct working platforms.

They can be made of timber, aluminium or steel.

Planks should have the correct information displayed upon them.

The usual width of a scaffold plank is 225 mm. The usual thickness of a hardwood solid timber scaffold plank is 32 mm.

Do not use scaffold planks with any of the following faults:

Possible timber plank defects:				
Warped.	Split.	Broken.		
Twisted.	Knots.			

Possible metal plank defects:		
Twisted.	End cap missing.	Crushed.
Distorted.	Broken weld reinforcing strap.	

If any of these are present then the plank **MUST NOT BE USED!**

2.1.1.2 Ladders

Ladders are used to access a scaffold.

You can only use a single industrial grade ladder to access a scaffold.

DO NOT use a domestic grade ladder.

It is vital that you only use ladders that are in good working order.

Possible ladder defects:	
Metal stiles are twisted, bent or kinked.	Ladder is not industrial strength.
Crushed damaged welds or damaged feet.	Ropes, braces or brackets are missing, worn or
Rungs are missing, worn, damaged or loose.	broken.

If any of these are present then the ladder **MUST NOT BE USED!**

2.1.1.3 Scaffold Tubes

Scaffold tubes may be made from aluminium or steel.

The minimum outside diameter of a common scaffold tube is 48mm.

The minimum wall thickness of a common steel scaffold tube is 4mm.

The minimum wall thickness of a common aluminium scaffold tube is 4.45mm (or 4.4mm or 4.5mm).

Possible scaffold tube defects:	
Pitted.	Flame cut.
Bent.	Cross cut.
Split ends.	Mushroom headed.
Tube wall thickness less than minimum requirements.	

If any of these are present then the scaffold tube **MUST NOT BE USED!**

2.1.1.4 Couplers and Fittings

Couplers (or clips or fittings) are used to join two scaffold tubes. There are many different types of coupler including:

- Right-angle coupler A non-swivel loadbearing coupler, other than a putlog coupler, that connects two tubes at right angles.
- **Swivel coupler** A coupler used for connecting two tubes at any angle.
- **Putlog coupler** A coupler for fixing a putlog to a ledger.
- End-to-end coupler Internal expanding joint pin that connects and aligns the tube end-to-end.
- **Sleeve coupler** An external end-to-end coupler for joining two tubes.
- **Parallel coupler** A coupler for making a lap or spliced joint between two tubes.

The following scaffold tubes may not be joined end-to-end:

- Ties.
- Transoms.
- Ledgers (if the join will occur within the end bay of a scaffold).

There are two methods of tightening a coupler:

Screw-Tightened Coupler	A coupler in which the clamping force on the tubes is provided by tightening the flaps around the tube by means of a bolt and nut.
Wedge-Tightened	A coupler in which the clamping force on the tubes is provided by tightening
Coupler	the flaps around the tube by means of a wedge hammered into place.

Do not use couplers with any of the following faults:

Possible coupler defects:	
Damaged hinges.	Damaged threads or nuts.
Excessive oil, grease or paint.	

If any of these are present then the coupler **MUST NOT BE USED!**

When couplers are used to prevent movement (as opposed to connecting scaffold tubes) they are referred to as 'check couplers'. Check couplers may be a right angle coupler, swivel coupler or parallel coupler that is fixed hard up against a loadbearing coupler to increase the slip resistance along the tube.

Different configurations of scaffold tubes require check couplers to prevent unwanted movement and keep the scaffold stable and secure.

Check couplers should be positioned to prevent movement caused by compression or tension (depending on the configuration). You need to identify whether the affected tubes are in tension or compression.

2.1.1.5 Fibre Ropes and FSWR

The minimum diameter of fibre rope you would use for a hand line is 12 mm.

To determine the rated capacity of fibre rope use the formula:

You must check any fibrous ropes carefully before using them. The checklist below outlines what you are looking for. If a rope shows any of these it is unsuitable for use.

Possible fibrous rope defects:	
Broken fibres/strands.	Stretched rope (overloading).
Excessive wear.	Abrasion.
High stranding.	Chemical exposure.
Brittleness.	Discolouration due to excessive heat.
Sun rot.	Mildew.
Knots.	

If any of these are present then the rope **MUST NOT BE USED**!

Flexible steel wire ropes (FSWR) are used for the termination of static lines and as guys for scaffolds.

To determine the rated capacity of FSWR use the formula:

You must check any FSWR carefully before using it. The checklist below outlines what you are looking for. If a FSWR shows any of these then it is unsuitable for use.

Possible FSWR defects:	
Missing or illegible rated capacity markings.	Excessive number of broken wires.
Bird-caging (Strands loosened from proper tight lay).	Severe kinking or fractures from bending or reeving.
More than 10% wear in the rope diameter.	Crushed/damaged strands.
Splice, ferrule, eye or thimble damage.	Abrasion wear.
Squashed FSWR.	Stretched or overloaded FSWR.
Knotted FSWR.	Core collapse.
Severe/serious corrosion (indicated by loose and springy wires).	High stranding.
Chemical exposure.	High temperature exposure.

If any of these are present then the rope **MUST NOT BE USED!**

2.1.1.6 Chains

Short link chains may be used to support hung scaffolds. The barrel of short link chain requires a greater force to bend, provides greater strength, reduces the tendency to twist and provides better reeving performance.

These chains must be Grade T and not less than 8mm in diameter. Grade markings or letters denoting the grade are stamped or embossed on the chain at least every metre or every 20 links, whichever is less.

Chains should be check before and after use to make sure they are in safe working condition. The checklist below outlines what you are looking for. If a chain shows any of these then it is unsuitable for use.

Possible Chain defects:	
Missing or illegible rated capacity tag.	Stretching, locked, movement restricted.
Incompatible grade and diameter components.	Squashed/crushed more than 10% of original link diameter.
Cracks in link welds, spot-welding.	Gouged/cut more than 10% of original link diameter.
Exposure to excessive heat.	Severe/excessive rust or corrosion.
Pitting.	Twists and/or kinks and/or knots.
Excessive wear on chain (over 10% wear in link diameter).	

2.1.1.7 Screening

Sheeting or screening is used to protect workers from environmental hazards such as dust and sunlight.

Do not use flammable material such as hessian for sheeting.

An engineer should always check the design of a sheeted scaffold.

2.1.1.8 Adjustable Props

Adjustable props are used to support temporary beams (needles) for cantilevered scaffolds and similar equipment, such as cantilevered crane loading platforms (CCLP).

They can also be used to secure suspension rigs/prefabricated needles that are located within a structure (floor above and below).

Generally, adjustable props come with two mechanisms for adjustment:

- A pin (sometimes called a prop or "G" pin) is used for coarse adjustments.
- A threaded collar is used for fine adjustments.

Make sure that all parts move and lock properly and that the prop is rated for the job. If you are unsure check with the manufacturer.

2.1.1.9 Prefabricated Needles/Suspension Rigs & Counterweights

Prefabricated needles or suspension rigs are used to support a suspended scaffold. These are purpose built and designed to support a specific amount of weight.

Some needles/rigs may be mounted to a rail allowing lateral (sideways/horizontal) movement.

These needles/rigs are often used in conjunction with purpose designed counterweights.

Counterweights may be used to help support a suspended scaffold that is attached to a prefabricated needle or suspension rig.

It is important that these counterweights are secured to prevent any accidental removal while the scaffold is in use.

2.1.1.10 Beam Clamps

Beam clamps are used to attach slings that are supporting a hung scaffold to a steel beam (RSJ).

2.1.1.11 Trolleys

Trolleys are used to secure a scaffold to a beam or girder flange allowing the scaffold to move side to side.

2.1.1.12 Hand Tools

There are many different tools and maintenance equipment you can use for the various different tasks needed to construct a scaffold including:

- Tape measures.
- Podgers.
- Wrenches.
- Cutters.
- Wire nips.
- Hammers.
- Sledge hammers.
- Hammer drills.
- Shovels.
- Wheelbarrows.
- Spirit and torpedo levels.
- Spanners and box spanners.

A scaffold belt can be used to carry hand tools while working.

All tools and equipment used for the erection, alteration and dismantling of scaffolds must be used in accordance with the manufacturers specifications, organisational policies and procedures and safe work practices.

Read the operators manual before using any equipment for the first time.

Do not exceed the limitations of the equipment – it could be extremely dangerous and could damage the equipment.

Always check that all tools and equipment are functioning correctly and that they do not show any signs of damage or wear.

2.1.2 Identify, Select and Inspect Scaffolding Equipment

Scaffolding equipment is made up of the equipment that is used with the scaffold while the scaffold is in use. This equipment is often installed once the scaffold is in place, or during the erection process.

Scaffolding equipment includes:

- Basic level equipment:
 - Materials hoists.
 - ♦ Gin wheels.
 - Static lines.
 - Safety nets.
- Intermediate level equipment:
 - Mast climbers.
 - Perimeter safety screens and shutters.
 - Cantilevered crane loading platforms.
- Advanced level equipment:
 - Swing stages.
 - Cradle.
 - Hoists.
 - Needles/rigs.

2.1.2.1 Swing Stages

If the scaffolding task requires you to erect a swing stage you will need to identify and select the following:

- Type and size of platform.
- Method of sideways (lateral) movement.
- Hoist type and capacity.
- Method of fixing needles/rigs.
- Any other job or site requirements that require specific equipment (e.g. overhead protection in platform).

Make sure that all components that make up the swing stage are appropriate for the job and in safe working order. You will need to check for signs of damage or wear on:

If anything looks unsafe or out of order you must not use it.

2.1.3 Identify Safety Equipment Requirements

Depending on the requirements of the job, you may need to use safety equipment to reduce the risk to an acceptable level.

Safety equipment includes:

- Safety harness.
- Lanyard.
- Energy absorber.
- Inertia reel.

All safety equipment should be selected at the planning stage. Safety equipment needs to be inspected before and after use.

2.1.3.1 Safety Harnesses

In most cases of working at heights a full body harness should be worn.

Harnesses must be correctly fitted in accordance with manufacturer's instructions to ensure effectiveness.

Workers should connect the fall-arrest line to the attachment point on their harness (dorsal attachment point in the middle of the back, or the chest connection) that will provide the best protection for the situation it is being used.

Safety harnesses must meet the requirements of AS/NZS 1891 Industrial fall-arrest systems and devices.

A fall-arrest harness must be inspected before use.

Common defects that will condemn a safety harness from use are:

- Fraying.
- Splitting.
- Any obvious signs of damage to any part of the harness.

Shown here are some examples of things you need to check the harness for:

en
SK

Component	Condition/Fault to be Checked
Webbing	 Cuts or tears. Abrasion damage. Excessive stretching. Damage due to contact with heat, corrosives or solvents. Deterioration due to rotting, mildew, or ultraviolet exposure.
Snap Hooks	 Distortion of hook or latch. Cracks or forging folds. Wear at swivels and latch pivot pin. Open rollers. Free movement of the latch over its full travel. Broken, weak or misplaced latch springs (compare if possible with a new snap hook). Free from dirt or other obstructions, e.g. rust.
D-rings	 Excessive 'vertical' movement of the straight portion of the D-ring at its attachment point of the belt, so that the corners between the straight and curved sections of the D become completely exposed. NOTE: Excessive vertical movements of the D-ring in its mounting can allow the nose of larger snap hooks to become lodged behind the straight portion of the D, in which position the snap hook can often accidently 'roll out' of the D under load. Cracks, especially at the intersection of the straight and curved portions. Distortion or other physical damage of the D-ring. Excessive loss of cross-section due to wear.
Buckles and adjusters	 Distortion or other physical damage. Cracks and forging laps where applicable. Bent tongues. Open rollers.
Stitching	 Broken, cut or worn threads. Damage or weakening of threads due to contact with heat, corrosives, solvents or mildew.

2.1.3.2 Lanyards and Energy Absorbers

Lanyards are used to stop tools falling from heights. These lanyards are connected to the tool and wrap around the wrist or belt of the scaffolder.

There should be a minimum of slack in the fall-arrest lanyard between you and the anchor point, which should be as high as the equipment permits.

The energy absorber should restrict the fall distance to a maximum of 2 metres before the fall-arrest system takes effect.

Avoid work above the anchor point, as this will increase the free fall distance in the event of a fall, resulting in higher forces on the body and greater likelihood of the energy absorber snagging on obstructions.

To reduce injuries caused by a fall, energy absorbers should be used as part of the fall arrest system.

2.1.3.3 Inertia Reels

Inertia reels provide a worker with a relatively free range of movement or extra reach compared to a lanyard, with the added safety feature of being able to lock in the event of a fall, arresting the descent of the worker.

Inertia reels should not be used in the following situations:

- While working on a sloped surface (e.g. a steeply pitched roof) or any other surface where a fall may not be a quick vertical one.
- Locked as a constant support for a worker during normal work.
- In conjunction with a lanyard.

Inertia reels must comply with AS 1891.3 Fall-arrest devices.

Shown here are some examples of some things you need to check an inertia reel for:

Component	Condition/Fault to be Checked
Rope (Fully Extend and Rewind Drum Anchorages)	 Cuts. Abrasions or fraying. Stretching. Damage due to contact with heat, corrosives, or solvents. Excessive dirt or grease impregnation. Check that the rope end is securely anchored to the drum.
Anchorage Body	 <i>Mountain ring:</i> Physical damage or wear. Cracks. Mounting security. <i>Anchorages body proper:</i> Physical damage. Check for the entry of foreign bodies. Loose or missing screws, nuts or similar objects. Position of the clutch compression indicator button.
Locking Mechanisms and Rope Guides	 Check rope guides for excessive wear or ridging. Check that the rope-locking mechanism locks and holds securely. Ensure that the rope runs freely through the anchorage, and that on rewind drum anchorages the rope rewinds completely without loss of tension.
Hardware	 Examine the condition and locking action of any associated snap hooks or links.

2.2 Identify Communication Methods and Equipment

You should always communicate with those around you while you work. Make sure you understand any instructions given to you.

Communication procedures can include:

- Manufacturer's guidelines (instructions, specifications, checklists).
- Industry operating procedures and relevant codes of practice.
- Workplace procedures (work instructions, operating procedures, checklists).
- Reporting and recording procedures (equipment defect/s).

Workplace communications may take the form of:

- Verbal and non-verbal language.
- Written instructions.
- Signage.
- Hand signals.
- Listening.
- Questioning to confirm understanding, and appropriate worksite protocol.
- Toolbox meetings.

2.2.1 Select and Inspect Communications Equipment

It is important that any two-way radio system provides clear signals without any interference on the channel.

Therefore it is important to select communication equipment that is appropriate to the work to be undertaken and the site on which you will be working.

Any communication equipment should also be inspected before use for faults or defects and proper functioning.

The two types of two-way radio are conventional and fixed channel.

Make sure all equipment is working properly and that you can communicate with other workers clearly (without interference) BEFORE you start the job. Do not use any communication equipment that is not consistently working properly.

2.2.1.1 Conventional Radio

Great care must be taken when allocating frequencies/channels to make sure that there are no other operators using the same frequency in the area.

Interference on your frequency can be a safety hazard. Stop work until the radio is checked or a new frequency selected and allocated.

2.2.1.2 Fixed Channel Radio

Fixed channel radio is a computer controlled two-way system that locks other radio users out of your selected frequency.

With a fixed channel radio it is possible to have several separate groups on one site communicating by radio without interfering with each other.

This radio is recommended for large sites.

2.3 Isolate Defective Equipment

If you identify any equipment that is defective, damaged or faulty you must not use it. The equipment needs to be isolated from use to stop anybody from accidentally using it and the defect needs to be reported to an authorised person.

Make sure you complete any isolation procedures as required.

This may include tagging or locking out equipment and completing fault reports or other documentation.

Faulty equipment may need to be labelled and rejected, destroyed or returned to the manufacturer for repair (depending on the type and severity of the fault).

2.4 Set Up for the Task

Once you have selected all of the equipment you will need and made sure it is safe to use you will need to start setting up for the task.

Planning and preparation are essential to conducting the work safely and on schedule.

2.4.1 Apply Hazard Control Measures

Once you are ready to start setting up the scaffold make sure you have implemented the necessary hazard control measures.

Talk to other workers in the area to make sure they are aware of the control measures you intend to use.

Always wear the required PPE for the job. Make sure that any control measures are consistent with workplace and safety standards. If you are unsure, check with your WHS officer or supervisor.

Hazard prevention/control measures may include:

- Power line warning systems (e.g. Tiger tails).
- Power disconnected by competent authority (where applicable).
- Safe and adequate access and egress (entry and exit).
- Safety tags on electrical switches and isolators.
- Safety observer (spotter) inside an exclusion zone (e.g. power lines).
- Setting up adequate lighting in the work area.
- Setting up barricades and traffic control to keep the area below the scaffold clear.
- Pedestrian control (barricades, signs, etc.) to limit the number of people in the area below the scaffold.
- Moving any obstructions out of the way.

2.4.2 Fit Safety Equipment

All safety equipment needs to be fitted before starting the scaffolding work. You need to make sure it is appropriate for the task and that it fits you correctly.

Never begin a scaffolding task without the appropriate safety equipment.

Safety systems (such as static lines) and working at heights where there is a chance of falls, require the use of a full body fall-arrest harness and installed anchor points.

Safety equipment also includes Personal Protective Equipment (PPE). Always make sure you are wearing the correct PPE for the task and worksite.

Generally at a minimum this would include:

- Hard hat/safety helmet.
- Safety gloves.
- Steel-capped work boots.
- High-visibility clothing.
- Fall arrest harness.

Check for signage on site or talk to a manager or supervisor if you are unsure of the PPE requirements for the site.

2.4.3 Prepare and Position Scaffolding Equipment

All equipment and scaffolding needs to be prepared in line with site procedures, the scaffolding plan and the manufacturer's specifications before you start the work.

Any equipment and plant that you will be using throughout the scaffolding work needs to be correctly and safely positioned. This could include positioning plant and equipment or moving scaffolding components into position where it can be safely accessed.

It also includes coordinating resources so that you have everything that you need in or close to the work area.

This will allow you to erect the scaffold and equipment without having to continuously leave the work area, or disrupt operations that may be taking place elsewhere on the worksite.

3.1 Erect Scaffold and Scaffold Equipment

Erecting a scaffold and scaffold equipment requires careful planning, knowledge of equipment and procedures, accurate site information and good communication skills.

Equipment should be unloaded as close as possible to the work area and arranged in a logical order.

All advanced scaffold work must be conducted in accordance with legislative requirements including the following Australian Standards:

- AS 1576 Scaffolding.
- AS 3569 Suspension & secondary ropes.
- AS 1418.2 Scaffolding hoists and trolleys.

It is also important to consider site information before you start such as:

You should already be familiar with this information by referring to it during the planning stages of the job, however things can change quickly on site and there may be new things to consider and manage.

Above all things you need to make sure that the site of the proposed scaffold is appropriate, safe, accessible and structurally capable of supporting the scaffold.

Make sure you consult with the appropriate site personnel (engineers, supervisors, other licensed scaffolders) before you start.

3.1.1 Suspended Scaffolds

A suspended scaffold has a platform that is supported by temporary supporting structures, and can be raised and lowered using flexible steel wire rope hoists. These are often associated with window washers.

Suspended scaffolds include:

- Swing stages.
- Hung scaffold.

Suspended scaffolds may be used for short term work on the sides of tall buildings or structures where access by other means is limited by the height of the work being carried out.

Where access to the scaffold is not from the ground, or a protected landing, a safety harness and lanyard attached to a suitable anchorage (rated to 15kN for a single person and 21kN for no more than 2 people) must be used to access the scaffold cradle/platform safely.

The building or structure to which the suspended scaffold is to be mounted must be able to support the scaffold as well as all loads placed upon it (e.g. dead loads, live loads, wind loads).

The supporting structure should be assessed by a competent person such as an engineer with experience in scaffolding structural design/analysis and knowledge of the relevant Australian Standards, before the suspended scaffold is erected.

All suspended scaffolds and suspension rigs must meet the relevant compliance requirements including:

\bigcirc	Engineering specifications.
T	Manufacturer's specifications.
Ŏ	AS1576.4 Suspended scaffolding.

These compliance requirements are relevant when erecting or altering an existing scaffold.

3.1.1.1 Swing Stages

A swing stage provides a suspended work platform for multiple personnel that is able to be raised and lowered using manual, pneumatic or electric hoists. A swing stage may be made up of the following components:

Cradle

All scaffold cradles must meet some basic safety and construction requirements. The cradle width requirements for different scaffolds are:

Scaffold Type	Minimum Cradle Width	Maximum Cradle Width
Double Rope Suspended Scaffold	900mm	1.7m
Swing Stage	450mm	900mm
Suspended Work Cage	750mm	1.5m

Other requirements include:

Item	Requirements		
	Should be fitted with:		
	Suardrails.		
	♦ Mid-rails.		
	♦ Toe-boards.		
	 Working deck safely secured to prevent movement. 		
	 Slip resistant with adequate drainage holes. 		
Cradle	 Free from trip hazards. 		
	 Up to a 3° degree slope in all directions is allowable in the scaffold platform, unless otherwise specifically designed. 		
	 Access between levels of a multi-tiered cradle should be fitted with: Protecting model 		
	 Protective mesn. Uliaged beaudages analiding batalysis 		
	 Hinged trapdoors or sliding natches. If there is no serves between levels there the second state is the second state. 		
	 If there is no access between levels then the scatfold should be able to be operated from any level. 		
	 Netting, if fitted to prevent materials falling from the cradle, should: 		
	Be constructed of galvanised wire mesh, at least 1.5mm thick.		
Protection and Safety	 Have wires spaced at least 20mm apart. 		
Trotection and barcey	Be fixed between the toe-board and guardrail on all sides.		
	 Overhead protection may need to be installed above a cradle if there is a likelihood of debris falling onto the scaffold. 		
	 Should be fully enclosed, lockable and protected from shock or environmental damage. 		
	 Should be attached to the inside of the guardrails away from the working face. 		
	 They should be removable so they can be secured safely when not in use. 		
Control Boxes	 Should be fitted with: 		
	 Socket outlets for hoists. 		
	A power on light indicator.		
	 An emergency stop button. 		
	 Should be displayed on a sign inside the cradle. 		
Rated Capacity	 Articulated and multi-tiered cradles should have the rated capacity displayed in each bay. 		
	 Always make sure that all materials are evenly distributed across the cradle. 		

Hoists

Requirements for hoists which should be checked for include:

Item	Requirements		
Protective Devices	 Most hoists should have built-in or independently mounted protection devices to act as an emergency brake in the event that the suspension rope is broken. A double rope suspension scaffold does not need a protective device for each scaffold. 		
Load Limiter	 Electric hoist should be fitted with: Load limiting device to stop the hoist damaging the suspension rope or toppling the suspension rig, if the scaffold becomes jammed. Electrically powered suspension scaffold must be fitted with: Load limiting device with a maximum setting of 1.25 x the rated capacity of the hoist or 125%. 		
Data Plates	 All suspended scaffolding should have legible data plates with the following information: Serial number. Type/model identification. Name/identification mark of the manufacturer. Rated capacity. Size, maximum length, grade and construction of Flexible Steel Wire Rope (FSWR) (where applicable). Reeving and power supply requirements (where applicable). 		

Scaffolding hoists should be designed, manufactured and tested in accordance with the Australian Standard AS 1418.2 – Scaffolding Hoists.

Always make sure a purpose-made weatherproof cover is fitted to all scaffold hoists to prevent contamination of the working mechanisms.

Suspension and Secondary Ropes

It is important that all suspension and secondary ropes must meet the requirements of the scaffold. These include:

Item	Requirements		
	 Suspension and secondary ropes should be the correct size and construction for the hoist or protective device used. They should have a swaged and thimble eye at one end. 		
Rope Arrangement	 There should be at least 1m of spare rope when a climber-type scaffolding hoist is at its lowest point. Excess rope should be protected from damage by coiling and tying or by being placed around a rope winder. 		
and Requirements	 At least 3 turns of rope should remain on the drum when a drum-type scaffolding hoist is at its lowest point. The drum flange should extend 2 rope diameters beyond the built up rope on a fully-loaded drum-type scaffolding hoist. 		
	 When replacing the FSWR on a climber hoist it is important that the same FSWR construction and size are used to help prevent the FSWR from being seriously damaged as it runs over the sheaves. 		
Rated Capacity of	 The rope tension on a shackle supporting a suspension rope should be no more than 80% of the shackles rated capacity. 		
Suspension Rope	 The rope tension on a choked sling supporting a suspension rope should be no more than 40% of the slings rated capacity. 		
Secondary Wire	 Secondary wire ropes should be attached to the suspension rigging independent of the main suspension rope. 		

Suspension Rigs

You should ensure that the suspension rig is adequate for the scaffold. Requirements you should check for include:

Item	Requirements		
Suspension Rig	 Must remain rigid and stable under working conditions. The design should take into account all forces and load (e.g. wind loads). A reveal propped needle suspension rig: Should have at least two rows of uprights fixed with ledgers and transoms as well as longitudinal, transverse and plan bracing systems. Needles can be fixed onto or under the reveal props. Close fitting U-heads may be used with rolled steel joists or universal beams. 		
Needle or Supporting Beam	 Should always be mounted with the greater vertical dimension. The outboard end of a needle should never be lower than the inboard end. A beam spanning between only two supports should always be horizontal. 		
Anchors	 If anchorage bolts are used they should be kept from loosening (e.g. with lock nuts). Do not use friction or chemical insert anchors on needles. Through bolts, props or bracket bolts are recommended for fixing the rig/needle in place. 		
Props	 If using props, they should be installed to the top of the needle and to the underside of the floor above. You must make sure that the props are correctly fixed to stop any movement or dislodgement: Aave a competent person (such as an engineer) check that the floor is able to withstand the force of the props and scaffold. 		

Counterweights and Tracks and Trolleys

Item	Requirements		
Counterweights	 Only use counterweight specially designed, manufactured and approved for the erection of suspended scaffolds. The counterweight should be secured directly on the needle or innermost suppor such a way that they cannot be removed or displaced without the use of tools. T will help to prevent the counterweights from slipping from the scaffold or being removed by accident. 		
Tracks and Trolleys	 Traversing tracks are hung beneath needles or supported by beams. The ends should be fitted with through bolted stops to stop trolleys running off the track. The trolley supporting a suspension rope should have a rated capacity of at least 500 kg. A spacer tie or spreader bar can be used to stop two trolleys from spreading (moving apart) while supporting a swing stage. Trolleys supporting a double rope suspended scaffold should be rigidly connected with plan braced to stop twisting. Ropes used for horizontal movement of a suspended scaffold should be a minimum 12mm diameter fibre rope. 		

All counterweights, tracks and trolleys must meet the following requirements:

3.1.1.2 Calculations for Suspended Scaffolds

Calculating maximum rope tension for an **electric hoist**:

Where DL = Dead Load.

NOTE: AS 1576 Clause 4.5 Load-Limiting Device states that electrically powered scaffolding hoists shall have a device to limit the lifting capacity of the hoist to a maximum 1.25 times the rating of such hoist. And Clause 4.7 Rope Tension states that rope tension for electrically powered scaffolding hoists is the summation of the load which is limited by the load limiting device, the gravitational load of the suspension rope and the tensioning weight.

Calculating maximum rope tension for a manual hoist:

Where DL = Dead Load.

Calculating rope minimum guaranteed breaking load for an electric hoist:

Minimum Guaranteed Breaking Load = Rated Capacity x 10

Calculating rope minimum guaranteed breaking load for a **manual hoist**:

NOTE: AS 1418 Clause 5.4.2 Ropes and reeved systems states that the safety factor of the wire rope based on the minimum breaking load shall be not less than:

- 7 for hand-operated scaffolding hoists.
- 10 for power-operated scaffolding hoists.

Calculating counterweight requirements for needle stability:

Number of Counterweights =

3 x Rope Tension (kg) x Outboard Length (mm) ÷ Inboard Length (mm) x Mass of Counterweight (kg)

The tables below outline how these calculations can be used when erecting different types/configurations of suspended scaffolds.

			Cradles	
		Type: Individual Cradle	Type: Work Cage	Type: Bosun's Chair
		No. of needles: 2	No. of needles: 1	No. of needles: 1
Hoist Type	Needle Type	Supported by : 2 suspension ropes, 2 scaffolding hoists (1 each per needle)	Supported by: 1 suspension rope, 1 scaffolding hoist	Supported by: 1 suspension rope, 1 scaffolding hoist
		Cradle dead load: 100kg	75kg	Seat dead load: 15kg
		Cradle Rated Capacity: 250kg	Work Cage Rated Capacity: 200kg	150kg
		Maximum rope tension: 955.5kg	Maximum rope tension: 955.5kg	Maximum rope tension: 955.5kg
Type: Electric Hoist	Needle 1 Outboard: 0.75m	Rope's minimum guaranteed breaking load: 7500kg	Rope's minimum guaranteed breaking load: 7500kg	Rope's minimum guaranteed breaking load: 7500kg
Rated Capacity: 750kg	Inboard: 4m	Number of 25kg counterweights required at the inboard end of the needle:	Number of 25kg counterweights required at the inboard end of the needle:	Number of 25kg counterweights required at the inboard end of the needle:
Suspension		22 counterweights	22 counterweights	22 counterweights
rope dead load: 36kg/100m		Maximum rope tension: 955.5kg	Maximum rope tension: 955.5kg	Maximum rope tension: 955.5kg
Load limiting device set at maximum allowable	Needle 2 Outboard: 0.5m	Rope's minimum guaranteed breaking load: 7500kg	Rope's minimum guaranteed breaking load: 7500kg	Rope's minimum guaranteed breaking load: 7500kg
overload	Inboard: 3m	Number of 25kg counterweights required at the inboard end of the needle: 20 counterweights	Number of 25kg counterweights required at the inboard end of the needle: 20 counterweights	Number of 25kg counterweights required at the inboard end of the needle: 20 counterweights

			Cradles	
		Type: Individual Cradle	Type: Work Cage	Type: Bosun's Chair
		No of needles: 2	No of needles: 1	No. of needles: 1
Hoist Type	Needle Type	Supported by: 2 suspension ropes, 2 scaffolding hoists (1 each per needle) Cradle dead load: 100kg Cradle Rated Capacity: 250kg	Supported by: 1 suspension rope, 1 scaffolding hoist Work cage dead load: 75kg Work Cage Rated Capacity: 200kg	Supported by: 1 suspension rope, 1 scaffolding hoist Seat dead load: 15kg Seat Rated Capacity: 150kg
		Maximum rope tension: 348kg	Maximum rope tension: 323kg	Maximum rope tension: 213kg
Type:	Needle 1 Outboard: 0.75m	Rope's minimum guaranteed breaking load: 2450kg	Rope's minimum guaranteed breaking load: 2450kg	Rope's minimum guaranteed breaking load: 2450kg
Manual Dead load: 35kg	Inboard: 4m	Number of 25kg counterweights required at the inboard end of the needle:	Number of 25kg counterweights required at the inboard end of the needle:	Number of 25kg counterweights required at the inboard end of the needle:
Rated		8 counterweights	8 counterweights	5 counterweights
Capacity: 350kg		Maximum rope tension: 348kg	Maximum rope tension: 323kg	Maximum rope tension: 213kg
Suspension rope dead load: 26kg/100m	Needle 2 Outboard: 0.5m	Rope's minimum guaranteed breaking load: 2450kg	Rope's minimum guaranteed breaking load: 2450kg	Rope's minimum guaranteed breaking load: 2450kg
	Inboard: 3m	Number of 25kg counterweights required at the inboard end of the needle: 7 counterweights	Number of 25kg counterweights required at the inboard end of the needle: 7 counterweights	Number of 25kg counterweights required at the inboard end of the needle: 5 counterweights

3.1.2 Hung Scaffolds

Hung scaffolds come in 2 main types:

Fabricated Hung Scaffolds	These are purpose built temporary structures that are attached to a permanent structure (such as a building or transmission tower) to support a working platform for personnel, tools and materials.
Tube and Coupler Hung Scaffolds	These are constructed from tubes to create a scaffold that is designed specifically for the structure it is attached to, and the work to be carried out.

Hung scaffolds are usually positioned in a static location, but depending on the work being conducted, may be hung from girder trolleys or mobile suspension rigs so they have limited horizontal (sideways) movement. Hung scaffolds are not capable of being raised or lowered while in use.

Shown here is an example of a hung scaffold that is supported by steel beams. The supports shown in the example are tubes, however it is possible for a hung scaffold to be supported using beam clamps and chains or FSWR.

(Toeboards omitted for clarity)

Hung scaffolds may also be erected with supports that pass through a supporting structure such as a grating or suspended concrete floor.

When erecting a hung scaffold **DO NOT**:

- Use open-ended hook rods.
- Extend its length by fixing scaffold tubes with end-to-end couplers.

The building or structure to which a hung scaffold is to be mounted must be able to support the scaffold as well as all loads placed upon it (e.g. dead loads, live loads, wind loads). The supporting structure should be assessed by a competent person before the hung scaffold is erected.

Structural changes made to the hung scaffold should be recorded on a design plan and reviewed by a competent person.

3.1.2.1 Hung Scaffold Requirements

All hung scaffolds must meet some basic safety and construction requirements. The following table outlines the minimum requirements for hung scaffolds:

Item	Requirements		
Platform	 The platform of a hung scaffold should be evenly decked, slip resistant and free from trip hazards. It should be secured safely to prevent movement. Generally, the platform should be horizontal with an allowable slope of 3° in all directions, although sloping platforms may be designed for certain purposes. The slope of a working platform should be no more than 7° (1:8). 		
Edge Protection	 Required where a person could fall more than 2m. Scaffold tube, purpose designed component or hardwood may be used for a guardrail Fibre rope, flexible steel wire rope (FSWR) and chain must never be used as a guardrail. Guardrail should be positioned between 900mm and 1100mm from the work platform surface. Toeboards must extend at least 150mm above the surface of the working platform. Midrails, infill, brick guards or mesh must be positioned between the toeboard and the guardrail. 		
Access	 Single industrial grade ladders may be used to access working platforms. Domestic grade or extension ladders must not be used. Ladder access should be fixed in a position between 6:1 and 4:1 vertical to horizontal. The minimum height that a portable access ladder must extend above the landing is 900mm. Access ramps may have a slope of up to 20° (1:3) as long as they are cleated to prevent slip hazards. Cleats should be 50 mm wide and 25mm thick and fixed at intervals of 450mm. 		
Supports	 A hung scaffold can be fixed to a supporting structure in a number of ways including rigid supports or slings (chain and FSWR) and shackles. Trolleys, beam clamps and shackles used to support a hung scaffold should have a rated capacity of at least 500 kg. Flexible Steel Wire Rope (FSWR) must have a minimum construction of 6x24 and be at least 11 mm in diameter when used to support a hung scaffold. Chain must be at least Grade T and not less than 8mm in diameter when used to support a hung scaffold. The maximum load placed on FSWR or chain must not be more than 1/6 of its minimum breaking strain. The Rated Capacity of FSWR can be estimated using the formula: Diameter squared x 7.5 Beam chaffers, half rounds and split tubes can be used to protect a Flexible Steel Wire Rope (FSWR) from damage when it is placed around the sharp edges of a beam. Shackle pins should be moused to stop them from unwinding. Do not use speed thread or multi-start thread coupler bolts for fixing hung standards. Couplers should be fixed on a ledger on either side of the eye of a sling to stop it sliding. 		
Positioning	 Trolleys should have a rated capacity greater than the total load they are to support. Rigid tie bars and plan bracing may be used to prevent girder trolleys from moving out of alignment. This will help the standards to remain vertical. Girders are required to have through-bolted stops to prevent the trolley from overrunning or running off the end of the girder. 		

3.1.3 General Scaffold Safety Requirements

Any incomplete or unfinished scaffolds need to have all access removed if being left unattended overnight.

You must also ensure that adequate isolation methods or barricading is in place to prevent unauthorised access.

Once a scaffold is fully completed and deemed safe to use a handover certificate must be presented. This handover certificate must be correctly completed once an inspection has taken place, and must be filled out by a competent person.

3.1.4 Work Safely at Heights

Working at heights includes any situation where a worker, or other nearby person, is exposed to a risk of falling (from one level to another) that is likely to cause injury to the worker or person.

All work at heights should include the use of safety equipment to prevent hazards such as personnel and materials falling from a height.

To avoid injuries use appropriate manual handling techniques when carrying out work tasks. Pass, receive and position components safely and confidently.

Stay in effective communication with other workers. All activities should be coordinated to ensure safety for all personnel and the effective completion of the scaffolding tasks.

DO NOT ever work on the open framework of a scaffold without fall protection systems in place. Guardrails and midrails should be installed on working platforms as soon as possible during the erection and dismantling of scaffolds.

The area below the work should be barricaded or fenced off to prevent unauthorised access by other workers or the general public. Where this is not possible, overhead protection decks such as temporary gantries, covered ways, cantilevered catch platforms, perimeter safety screens or debris/safety nets may need to be installed.

Check access from the ground to the work area (where applicable) to make sure it is safe, free of obstructions and meets all safety and work requirements.

All hand tools should be securely stowed on a belt to maintain the safety of all personnel.

3.1.4.1 Monitor Work Area and Equipment

You should regularly monitor the work area for changing conditions or new potential hazards. Periodically check all equipment during work to ensure that it remains safe, effective and undamaged.

Monitor the work area and equipment to make sure that:

- Safety equipment remains effective and has not been damaged.
- Fall protection equipment is in place and adjusted appropriately to cater for movement during work.
- Scaffold components and fall barriers are in place during work.
- Existing hazard controls are monitored and modified in relation to changing work practices or site conditions.
- New hazards are identified and appropriate hazard controls are implemented to deal with them.

When working at heights make sure that the work area is kept clean and tidy. Rubbish should be removed regularly in a safe manner.

Do not throw rubbish from the work area to the ground. Keep access ways clear of materials, tools and equipment.

Remain aware of changing weather conditions. Sudden strong gusts of wind may cause workers to lose their balance or cause materials or equipment to be swept over the edge of the work area. Rain may cause the surface of the work area to become slippery.

Under no circumstances should suspended scaffolds be used in extremely windy conditions.

3.1.5 Communications

Make sure you select the most appropriate communication equipment and methods to co-ordinate the scaffolding task.

This communication could be between you and plant operators, or other members of the scaffold team.

Communications need to be clear especially between workers who are on different levels of the scaffold during the erection process.

It is important that you are able to coordinate the movement of scaffold components and that you work to the schedule or plan during the erection process. It will help to ensure the stability of the scaffold and the safety of the workers in the area.

3.2 Inspection and Maintenance of Scaffolds

Once the scaffold has been erected it will need to be inspected by a competent person for the following:

- Stability and condition of structure.
- Standards secure, plumb, correctly joined and spaced (where relevant).
- Ledgers secure, level, correctly joined and spaced (where relevant).
- Transoms/putlogs secure, level, correctly joined and spaced (where relevant).
- Bracing and ties in correct position and properly fixed (where relevant).
- Sufficient and safe access to all working platforms.
- Platforms positioned and secured correctly. Correct number and dimensions of platforms for duty.
- Edge protection correctly installed.
- Sheeting/screens/shutters correctly installed (where relevant).
- Scaffold matches structural plan.

Once a scaffold erection, inspection or modification is completed an inspection record needs to be placed on the scaffold.

The inspection record needs to include the following details:

Record Detail	Explanation	
Location	Unit/plant number followed by area of plant.	
Ref. No.	Work Order number.	
Date Erected	Date the erection of the scaffold was complete.	
Requested By	This should be the Team leader/Plant Area Coordinator etc., requesting the scaffold. (This may be on the Work Order).	
Built By	This is the company who built the scaffold.	
Name of Competent Person	Print the name of the competent person/certified scaffolder.	
Signature	Signature of competent person/certified scaffolder.	
Light Duty 225kg		
Medium Duty 450kg	As per AS/NZS 4576.	
Heavy Duty 675kg		

3.2.1 Modifying or Inspecting a Scaffold

Where practicable, the licensed person who erected the scaffold, and whose name appears on the inspection record, is to be the person to perform scaffold modifications and inspections.

Prior to modifying scaffold:

- Remove the inspection record.
- Replace with a notification inspection record detailing the date and time of the modification or inspection, the name of the person performing the modification or inspection and the reason for the alteration where relevant.

Shown here is an example of an inspection record system of cards:

Inspection Record Card Holder	Inspection Record Front	Inspection Record Back
Safe Work Scaffolding DO NOT USE SCAFFOLD	Safe Work Scaffolding SCAFFOLD RELEASED FOR ACCESS LOCATION REF. NO. DATE ERECTED REQUESTED BY SIGNATURE PRINT COMPETENT PERSON SIGNATURE PRINT DUTY NOTES	Inspection Record back Safe Work Scaffolding ALL SCAFFOLDING COMPONENTS AND STRUCTURES MUST BE INSPECTED BY A COMPETENT PERSON BEFORE EACH WORKSHIFT AND AFTER ANY INCIDENT WHICH COULD ALTER THE STRUCTURAL INTEGRITY OF THIS SCAFFOLD. INSPECTION RECORD DATE DATE COMPETENT PERSON DATE COMPETENT PERSON DATE COMPETENT PERSON DATE COMPETENT PERSON
This inspection record is an example only	This inspection record is an example only	This inspection record is an example only

3.2.2 Completing a Handover Certificate

As the licensed person who erected the scaffold, you will need to complete a handover certificate and sign off tag when the job is complete.

It should contain the following information:

- The name of the client that the work has been done for.
- Address of the worksite where the tasks were completed.
- The location of the scaffold in the worksite.
- The type of scaffold that was erected (e.g. modular, mobile).
- The height and length of the scaffold.
- The number of lifts and bays in the scaffold.
- The duty category of the scaffold (e.g. light, medium, heavy, special).
- The type of access available (e.g. ladder, ramp, stairway).
- Design reference number.
- Date and time of handover.
- Name and signature of the responsible person.

An example of a handover certificate can be found in Appendix B.

3.3 Dismantle Scaffold and Scaffold Equipment

Always follow the manufacturer's instructions when disassembling equipment to ensure the safety of all personnel in the area, to maintain stability during the process and to prevent any damage to the plant and equipment.

Dismantle the scaffold according to the correct procedures.

- Work safely at heights utilising safety equipment such as fall arrest systems (e.g. harness and lanyard).
- Clear the platforms of all equipment and loose material.
- Maintain clear communication with other personnel to ensure everyone knows what they are supposed to be doing.
- Always work methodically and follow site procedures to avoid any unplanned collapse of plant and equipment. Unplanned collapse can result in serious injuries to personnel and damage to equipment and materials.

Once they are no longer needed, safety systems such as static lines, fall-arrest harnesses and safety nets should be dismantled according to the correct sequence and procedures, then removed from the work area.

3.4 Incidents and Emergency Response

Emergencies can happen quickly and without warning when work is being done at heights.

If all necessary precautions, hazard control measures and safety equipment have been used then the risk of serious consequences is reduced.

However you should always be prepared to take action in an emergency situation, even if that action is as simple as calling for help.

3.4.1 What is an Incident

An incident is:

• An accident resulting in personal injury or damage to property.

OR

 A near miss or dangerous occurrence which does not cause injury but may pose an immediate and significant risk to persons or property, and needs to be reported so that action can be taken to prevent recurrence.

All incidents **MUST** be reported!

3.4.1.1 Responding to an Incident

If an unsafe incident or event occurs during rigging operations you should:

3.4.2 Workplace Emergencies

Site emergencies may include:

- Fire (electrical, chemical, gas, mechanical, paper, wood or natural).
- Gas leak.
- Toxic and/or flammable vapours emission.
- Vehicle/machine accident.
- Chemical spill.
- Injury to personnel.
- Structural collapse.

3.4.2.1 General Emergency Response

In the case of an emergency:

- Remain calm.
- Raise the alarm with your supervisor, safety officer, emergency services (dial 000) and any other people at the workplace.
- You need to tell people:
 - That there is an emergency.
 - What the emergency is.
 - Any unsafe areas that need to be avoided.
- Evacuate if necessary (refer to site emergency plans).

3.4.2.2 General First Aid

First Aid kits must be supplied by your employer.

The location of these kits should be clearly marked with signage.

In the case of an emergency where somebody requires first aid, notify your supervisor or first aid officer and they will take action.

3.4.3 Incidents Relating to the Use of Fall-Arrest Systems

If a worker who is using an individual fall-arrest system falls from an edge, the system may act as a pendulum.

This may result in the worker hitting the ground (called 'swing down') or swinging back into the building or structure (called 'swing back').

These situations may also be referred to as 'the pendulum effect'.

Swing down can occur if the lanyard slides back along the perimeter edge of the roof as a worker falls, until it is vertical.

When this happens, the worker may hit the ground (or lower level), or the lanyard may break from being dragged across the edge of the roof.

3.4.3.1 Suspension Trauma

Suspension trauma can occur with a fall-arrest system when a person has an arrested fall and is suspended in an upright, vertical position with the harness straps causing pressure on the leg veins.

The lower legs' capacity to store large amounts of blood reduces the return of blood to the heart, slowing the heart rate, which can cause the person to faint.

This may lead to renal failure and eventually death, depending on a person's susceptibility. This condition may be worsened by heat and dehydration.

3.4.3.2 Preventing Suspension Trauma

The following techniques can be used to help prevent suspension trauma in a person who is hanging in a fall-arrest harness:

- Never work alone when using a harness as fall protection.
- Wherever possible use a fall-arrest harness that allows the legs to be kept horizontal.
- If possible keep the time a worker spends in suspension after a fall limited to less than five minutes. This can be achieved by providing foothold straps or a way of placing weight on the legs.

If you find yourself in a situation where you are suspended in a fall-arrest harness after a fall attempt the following action:

- **1.** Move your legs in the harness and push against any footholds to relieve pressure on your upper legs.
- **2.** Move your legs as high as possible and tilt back so that you become as horizontal as possible.

The quick rescue of a person suspended in a full body harness, as soon as possible, is vital.

For this reason, workers should be capable of conducting a rescue of a fallen worker and be familiar with onsite rescue equipment and procedures.

If a worker has fallen and is hanging suspended in a safety harness for a prolonged period of time (5 to 30 minutes) it is absolutely vital that first aid procedures are implemented as quickly as possible.

3.4.3.3 First Aid for Suspension Trauma

In accordance with Australian Resuscitation Council (ARC) guideline 9.1.5, first aid management of suspension trauma should be carried out as follows:

- **1.** Call for an ambulance (dial 000 or 112).
- **2.** If unconscious, manage the victim according to basic life support principles. If conscious, rest the victim in a comfortable position, ideally lying down, and provide reassurance.
- **3.** Loosen or remove the harness.
- 4. Administer oxygen if available.
- **5.** Look for and manage associated injuries in the victim, especially if they have fallen or been electrocuted.
- 6. Monitor the signs of life at frequent intervals.

Remember, care of the airway takes precedence over any injury.

3.4.4 Report All Hazards, Incidents and Injuries

Depending on the nature and severity of the situation you may need to report to:

- Your supervisor.
- Emergency services (e.g. police, ambulance, fire brigade and emergency rescue).
- WHS regulatory authority (e.g. WorkSafe, WorkCover).

Ask your WHS representative or supervisor at the site office for the relevant forms and procedures for reporting hazards, incidents and injuries.

3.5 Conclude Scaffolding Operations

Once the scaffolding task has been completed you will need to carry out any other tasks as required by site procedures.

This may include:

Tidying the work area and removing rubbish or materials from the site.

Inspecting scaffolding and associated equipment for defects.

Isolating defective equipment in accordance with procedures and recording and reporting defects.

Removing hazard control measures.

3.5.1 Tidy the Work Area

Once the work has been completed you need to clean up the work area. Remove any leftover materials and debris created by the task as soon as practicable.

Litter and other building debris can cause a tripping hazard for personnel. Make sure all rubbish is collected and disposed of correctly.

Dispose of any debris properly without impacting negatively on the environment. Make sure all materials are collected and removed properly.

Divide up recycling and other waste materials for correct removal and processing.

3.5.2 Inspect and Store All Scaffolding Equipment

All equipment needs to be inspected once all scaffolding operations have been completed. Check for any damage that may have occurred while the equipment was in use.

The manufacturer's instructions may have inspection checklists relating to different types of equipment that should be referred to.

Make sure that you clean the equipment if necessary and that all scaffolding equipment and parts are stored correctly in accordance with site procedures.

3.5.2.1 Isolate Faulty Equipment and Report Defects

Any defective equipment needs to be properly isolated and removed from service to prevent anybody from accidentally using it and standard procedures for isolating equipment and recording and reporting defects need to be followed.

3.5.3 Remove Hazard Control Measures

Any control hazards that are no longer required need to be removed from the work area and stored according to procedures.

Inform any relevant personnel that the work area has been returned to normal conditions and that your tasks have been completed.

Appendix A – Safe Work Method Statement

SWMS Name:	SWMS Created By:	Date of Creation:
SWMS Summary:	<u>.</u>	Last Reviewed Date:

Company/Contractor Details:	Project Details:
Name:	Client:
ABN:	Contact Name:
Address:	Site Address:
Contact Number:	Contact Number:
Email:	Start Date:

How to complete this SWMS:

- **1. CONSULT:** Consult with all persons who will be involved in the completion of the work.
- 2. LIST: List each of the steps in the task work being done.
- **3. IDENTIFY:** Describe the health and safety hazards and risks arising from each step in the work.
- 4. RISK ASSESSMENT: Review the level of risk associated with each hazard listed.
- 5. CONTROL: Describe how the risks will be controlled, and describe what hazard control measures will be put in place.
- 6. **RESPONSIBILITY:** Allocate a person to be responsible for the hazard control measure.
- 7. REVIEW: Review the effectiveness of the control measures and apply further hazard control measures as required.

Training/Qualifications Required To Carry Out Work:	PPE Required To Carry Out Work:
Are All Workers Adequately Trained And Qualified?	
Yes / No	
Legislation, Australian Standards & Codes Of Practice	Equipment Required To Carry Out Work:
Relevant To Work (Where Applicable):	
Environmental Chatemants	
Environmental Statement:	Safety Checks Required Prior To Commencement Of Work:
Environmental Statement:	Safety Checks Required Prior To Commencement Of Work:
Environmental Statement:	Safety Checks Required Prior To Commencement Of Work:
Environmental Statement:	Safety Checks Required Prior To Commencement Of Work:
Environmental Statement:	Safety Checks Required Prior To Commencement Of Work:
Environmental Statement:	Safety Checks Required Prior To Commencement Of Work:
Environmental Statement:	Safety Checks Required Prior To Commencement Of Work:
Environmental Statement:	Safety Checks Required Prior To Commencement Of Work:
Environmental Statement:	Safety Checks Required Prior To Commencement Of Work:
Environmental Statement:	Safety Checks Required Prior To Commencement Of Work:
Environmental Statement:	Safety Checks Required Prior To Commencement Of Work:
Environmental Statement:	Safety Checks Required Prior To Commencement Of Work:
Environmental Statement:	Safety Checks Required Prior To Commencement Of Work:
Environmental Statement:	Safety Checks Required Prior To Commencement Of Work:
Coordination With Other Trades:	Safety Checks Required Prior To Commencement Of Work: Permits Required For Commencement Of Work:
Coordination With Other Trades:	Safety Checks Required Prior To Commencement Of Work: Permits Required For Commencement Of Work:
Coordination With Other Trades:	Safety Checks Required Prior To Commencement Of Work: Permits Required For Commencement Of Work:
Coordination With Other Trades:	Safety Checks Required Prior To Commencement Of Work: Permits Required For Commencement Of Work:
Coordination With Other Trades:	Safety Checks Required Prior To Commencement Of Work: Permits Required For Commencement Of Work:
Coordination With Other Trades:	Safety Checks Required Prior To Commencement Of Work: Permits Required For Commencement Of Work:
Coordination With Other Trades:	Safety Checks Required Prior To Commencement Of Work: Permits Required For Commencement Of Work:
Coordination With Other Trades:	Safety Checks Required Prior To Commencement Of Work: Permits Required For Commencement Of Work:
Coordination With Other Trades:	Safety Checks Required Prior To Commencement Of Work: Permits Required For Commencement Of Work:
Coordination With Other Trades:	Safety Checks Required Prior To Commencement Of Work: Permits Required For Commencement Of Work:
Coordination With Other Trades:	Safety Checks Required Prior To Commencement Of Work: Permits Required For Commencement Of Work:
Coordination With Other Trades:	Safety Checks Required Prior To Commencement Of Work: Permits Required For Commencement Of Work: Have These Permits Been Acquired?
Coordination With Other Trades:	Safety Checks Required Prior To Commencement Of Work: Permits Required For Commencement Of Work: Have These Permits Been Acquired?
Coordination With Other Trades:	Safety Checks Required Prior To Commencement Of Work: Permits Required For Commencement Of Work: Have These Permits Been Acquired? Yes / No

Risk Analysis Matrix

Use this table to determine the level of risk associated with an identified hazard.

	Consequence						
Likelihood	1. Insignificant	2. Minor First Aid Required	3. Moderate Medical Attention and Time Off Work	4. Major Long Term Illness or Serious Injury	5. Catastrophic Kill or Cause Permanent Disability or Illness		
1. Rare	Low	Low	Moderate	Moderate	Moderate		
2. Unlikely	Low	Low	Moderate	Moderate	High		
3. Possible	Low	Moderate	High	High	Extreme		
4. Likely	Moderate	Moderate	High	High	Extreme		
5. Almost Certain	Moderate	High	High	Extreme	Extreme		

Risk Level	Action
Extreme	This is an unacceptable risk level The task, process or activity must not proceed .
High	 This is an unacceptable risk level The proposed activity can only proceed, provided that: The risk level has been reduced to as low as reasonably practicable using the hierarchy of risk controls. The risk controls must include those identified in legislation, Australian Standards, Codes of Practice etc. The risk assessment has been reviewed and approved by the Supervisor. A Safe Working Procedure or Work Method Statement has been prepared. The supervisor must review and document the effectiveness of the implemented risk controls.
Moderate	 This is an unacceptable risk level The proposed activity can only proceed, provided that: 1. The risk level has been reduced to as low as reasonably practicable using the hierarchy of risk controls. 2. The risk assessment has been reviewed and approved by the Supervisor. 3. A Safe Working Procedure or Work Method Statement has been prepared.
Low	The proposed task or process needs to be managed by documented routine procedures, which must include application of the hierarchy of controls.

Safe Work Method Statement

Work Step	Associated/Identified Hazards	Risk Level	Hazard Controls	Revised Risk Level	Person Responsible
Work your way through each step in the work process, giving a brief description of what is required at each stage.	What hazards can be identified for this step?	What is the risk level?	What hazards controls will be put into place to deal with the identified hazards for this step?	Has the risk been reduced?	Who is responsible for carrying out the work and maintaining the hazard controls?

CPCCLSF4001 Licence to erect, alter and dismantle scaffolding advanced level

Work Step	Associated/Identified	Risk	Hazard Controls	Revised	Person
	nazarus	Level		Level	Responsible
Work your way through each step in the work process, giving a brief description of what is required at each stage.	What hazards can be identified for this step?	What is the risk level?	What hazards controls will be put into place to deal with the identified hazards for this step?	Has the risk been reduced?	Who is responsible for carrying out the work and maintaining the hazard controls?

Personnel Signoff

All personnel required to carry out this task need to be listed below.

By signing this SWMS, each person declares that they have carefully read the SWMS and that they understand their responsibilities and requirements to complete the work.

Name (please print)	Position / Qualification	Signature	Date

Review Date:

Senior Management Signoff

Does this SWMS meet the necessary safety requirements? Yes / No

Does this SWMS require review? Yes / No

Additional Comments:		

Name:	Position:	Signature:	Date:
		5	

Appendix B – Handover Certificate

Handover Cortificate		Handover Date:				
Handover Certificate		Handover Time:				
Client Name:			Contact Na	ame:		
Worksite Address:			Scaffold Lo	ocation On Site		
Type Of Scaffold:						
Duty Category (Please Circle)	Light	Me	dium	Heavy		Special
Number Of Lifts:			Height Of S	Scaffold:		
Number Of Bays:			Length Of	Scaffold:		
Type Of Access:			Design Reference Number:			
NOTES:						
Name Of Person Resp	onsible:					
Signature Of Person R	esponsible:					